VexIQ Robotics Platform

Travelling a set Distance.... Ratios \& Proportions

Before you start (Need to knows)

- Circumference of Wheel $=\pi D$
- How far you will travel in one rotation of the wheel

Travelling a set Distance.... Ratios \& Proportions

```
Math
Wheel Circumference = \pi x 2.5"
Wheel Circumference = 3.1415*2.5"
1 rotation of the wheel it travels 7.8539"
Ratio is 7.85":1 = 7.8539"
```


Math

Wheel Circumference $=\pi x$ 2.5"
Wheel Circumference $=3.1415$ * 2.5 "
1 rotation of the wheel it travels 7.8539"
Ratio is $7.85^{\prime \prime}: 1=\frac{7.8539 "}{1 \text { Rotation }}$

Proportion

1 rotation = 7.8539"
Distance Travelled in 5 rotations
5 x 7.8539" = 39.2699"

Rotations need if travelling $24^{\prime \prime}$
$24^{\prime \prime} \div 7.8539$ " $=3.0558$ "

Turning Precisely.... Ratios \& Proportions

Proportions for turning
1 rotation = 132^{0}

$$
\text { Ratio is } 120^{\circ}: 1 \text { or } \frac{120^{0}}{1 \text { Rotation }}
$$

Wanting to Rotate 180°

$$
180^{\circ} \div \frac{120^{\circ}}{1 \text { Rotation }}=180^{\circ} \times \frac{1 \text { Rotation }}{120^{\circ}}
$$

Rotations need to travel $180^{\circ}=\frac{180^{\circ}}{120^{\circ}}=1.50$ rotations
90° Turn $=.75$ rotations
45° Turn $=.375$ rotations

Ratios \& Proportions Mathematical Equations

Distan $\frac{7.8539 "}{1 \text { Rotation }}$	Travelled $\frac{\text { Distance to Travel }}{\# \text { rotations }}$
I want to go 5 rotations $\begin{aligned} & \frac{7.8539^{\prime \prime}}{1 \text { Rotation }}=\frac{\text { Distance to Travel }}{\# \text { rotations }} \\ & \frac{7.8539^{\prime \prime}}{1 \text { Rotation }}=\frac{x}{5} \\ & X=5^{*} 7.8539 \\ & X=39.2695^{\prime \prime} \end{aligned}$	I want to travel a distance of 24" $\begin{aligned} & \frac{7.8539^{\prime \prime}}{1 \text { Rotation }}=\frac{\text { Distance to } \text { Travel }}{\# \text { rotations }} \\ & \frac{7.8539^{\prime \prime}}{1 \text { Rotation }}=\frac{24^{\prime \prime}}{x} \\ & 7.8539 x=24 \\ & X=\frac{24^{\prime \prime}}{7.8539} \\ & X=3.0558 \text { rotations } \end{aligned}$

Motor and Sensor Setup

Always make sure your motor ports are setup correctly. The Standard Drive base as shown above uses Port 1 and Port 6. If you are in different Ports your will have to change them in the Motors Tab.

Basic Code Using Simple Behaviors

V Simple Behaviors
backward
forward
moveMotor
turnLeft
turnRight

Simple Behaviors is the easiest way to get your robot driving. As long as you define the motors correctly in the "Motor and Sensor Setup" based on the previous slide.

$\}$ forward (1 ,	rotations \quad,	50 ;
turnRight (1	, rotations	, 50);

forward (360	,	degrees			50		;
turnLeft	180	,	degrees	\checkmark	,	50);

setMotor (leftMotor \checkmark	-20);
s setMotor (rightMotor	20);

Not using simple behaviors is more difficult. These lines just "Set" the motors but don't even move them

Maze Assignment

STEP \#1	Measure the distance CENTRE to CENTRE of each leg of the trip and record it on a piece of paper
STEP \#2	Convert ALL the distances to ROTATIONS using the equations you have learned
STEP \#3	Calculate your Turning ROTATION precisely
STEP \#4	Program the robot
STEP \#5	Complete the challenge in the FIRST TRY!!!

Gyro

Gyro measures turn rate and calculates direction based on your robots movement


```
resetGyro ( gyroSensor \nabla);
setMotor ( leftMotor \nabla, 20);
setMotor ( rightMotor v, -20);
waitUntil(|getGyroDegrees(gyrotest) \nabla <= ` -90);
```


Right Turn

Line Following

The Color Sensor detects the color of objects. When following a line it goes into a "Greyscale Mode" that provides the amount of reflected light from the surface under it. Dark surfaces absorb light, while bright surfaces reflect it.

Distance Sensor

The Distance Sensor uses ultrasonic sound waves to measure distances from 50 mm to 1 m

Code that is used to avoid a wall.....

