VexIQ Robotics Platform

Travelling a set Distance.... Ratios & Proportions

Before you start (Need to knows)

- Circumference of Wheel = πD
- How far you will travel in one rotation of the wheel

Travelling a set Distance.... Ratios & Proportions

Math

Wheel Circumference = $\pi x 2.5$ "

Wheel Circumference = 3.1415 * 2.5"

1 rotation of the wheel it travels 7.8539"

Ratio is 7.85":1 = $\frac{7.8539"}{1 Rotation}$

Math

Wheel Circumference = $\pi x 2.5$ "

```
Wheel Circumference = 3.1415 * 2.5"
```

```
1 rotation of the wheel it travels 7.8539"
```

```
Ratio is 7.85":1 = \frac{7.8539"}{1 Rotation}
```

Proportion

L rotation = 7.8539"	Ratio is 7.85:1"
Distance Travelled in 5 rotations	5 x 7.8539" = 39.2699"
Rotations need if travelling 24"	24" ÷ 7.8539" = 3.0558"

Turning Precisely.... Ratios & Proportions

90^o Turn = .75 rotations 45^o Turn = .375 rotations

Ratios & Proportions Mathematical Equations

Distance Travelled		Amount of Degrees of Rotation		
$\frac{7.8539''}{1 Rotation} = \frac{Distance to Travel}{\# rotations}$		$\frac{120^{0}}{1 Rotation} = \frac{1}{1}$	Distance to Rotate # rotations	
I want to go 5 rotations $\frac{7.8539''}{1 Rotation} = \frac{Distance to Travel}{\# rotations}$ $\frac{7.8539''}{1 Rotation} = \frac{x}{5}$ $X = 5 * 7.8539$ $X = 39.2695''$	I want to travel a distance of 24" $\frac{7.8539"}{1 Rotation} = \frac{Distance to Travel}{\# rotations}$ $\frac{7.8539"}{1 Rotation} = \frac{24"}{x}$ 7.8539x = 24 $X = \frac{24"}{7.8539}$ X = 3.0558 rotations	Degrees after 5 rotation $\frac{120^{0}}{1 Rotation} = \frac{Degrees to Rotate}{\# rotations}$ $\frac{120^{0}}{1 Rotation} = \frac{x}{5}$ $X = 5 * 120$ $X = 600^{0}$	I want Rotate 180^{0} $\frac{120^{0}}{1 Rotation} = \frac{Degrees to Rotate}{\# rotations}$ $\frac{120^{0}}{1 Rotation} = \frac{180^{0}}{x}$ $120x = 180$ $X = \frac{180}{120}$ $X = 1.50 \text{ rotations}$	

Motor and Sensor Setup

Motors and Sensors Setup	Motors and Sensors Setup
Standard Models Datalogging Motors Devices	Standard Models Datalogging Motors Devices
Robot Configuration Model Type Standard Model Configuration Standard Drive Base File Containing User Defined Model Configuration Browse Custom Configuration Model Description Model Description Model Description Moder Ports: VEX IQ Port 6: rightMotor VEX IQ Port 6: rightMotor	Port Name Type Reversed Drive Motor Side motor2 No motor No motor I.eft I.eft motor3 No motor No motor I.eft I.eft motor4 No motor I.eft I.eft I.eft motor5 No motor I.eft I.eft I.eft motor1 No motor II.eft III.eft III.eft motor10 No motor III.eft III.eft III.eft Motor11 No motor III.eft III.eft III.eft III.eft Motor11 No motor III.eft III.eft III.eft III.eft III.eft III.eft III.eft III.eft III.eft III.eft III.eft III.eft III.eft No motor III.eft III.eft III.eft IIII.eft IIII.eft III.eft<
OK Cancel Apply	Help OK Cancel Apply Help

Always make sure your motor ports are setup correctly. The Standard Drive base as shown above uses Port 1 and Port 6. If you are in different Ports your will have to change them in the Motors Tab.

Basic Code Using Simple Behaviors

▼ Simple Behaviors

backward

forward

moveMotor

turnLeft

• turnRight

Simple Behaviors is the easiest way to get your robot driving. As long as you define the motors correctly in the "Motor and Sensor Setup" based on the previous slide.

moveMotor (motor8 - , 1 , rotations - , 50);

> setMotor (leftMotor 🗸 , -20);	Not using simple behaviors is more difficult. These lines just "Set" the motors
> setMotor (rightMotor 🔻 , 20);	but don't even move them
> setMultipleMotors (50 , leftMotor	<pre> , rightMotor -, noMotor -, noMotor -); </pre>

Maze Assignment

STEP #1	Measure the distance CENTRE to CENTRE of each leg of the trip and record it on a piece of paper		End	
STEP #2	Convert ALL the distances to ROTATIONS using the equations you have learned			
STEP #3	Calculate your Turning ROTATION precisely			
STEP #4	Program the robot			
STEP #5	Complete the challenge in the FIRST TRY!!!		Start	

Gyro

Gyro measures turn rate and calculates direction based on your robots movement

> resetGyro (gyroSensor 🗸);
> setMotor (leftMotor 🗸 , -20);
> setMotor (rightMotor , 20);
<pre>waitUntil (getGyroDegrees(gyrotest) >= 90);</pre>
<pre>stopMultipleMotors (leftMotor •, rightMotor •, noMotor •, noMotor •);</pre>

resetGyro (gyroSensor 🗸);
setMotor (leftMotor 🗸 20);
> setMotor (rightMotor , -20);
<pre>waitUntil (getGyroDegrees(gyrotest) <= -90);</pre>
<pre>stopMultipleMotors (rightMotor •, leftMotor •, noMotor •, noMotor •);</pre>

Right Turn

Left Turn

Line Following

The Color Sensor detects the color of objects. When following a line it goes into a "Greyscale Mode" that provides the amount of reflected light from the surface under it. Dark surfaces absorb light, while bright surfaces reflect it.

Distance Sensor

The Distance Sensor uses ultrasonic sound waves to measure distances from 50mm to 1m

otors and Sensors Setu	lb.	a vite O ver
Standard Models Moto	rs Devices	
Port	Name	Sensor Type
port 1	I	Motor 👻
port2		No Sensor 👻
port3		No Sensor 👻
port4		No Sensor 👻
port5		No Sensor 👻
port6		Motor 👻
port7	distanceMM	Distance (Sonar) 👻
port8		No Sensor 👻
port9		No Sensor 👻
port10		No Sensor 👻
port11		No Sensor 👻
port 12		No Sensor 👻

re	epea	at (forever) {
	i	f(getDistanceValue(distanceMM) → > → 75) {
		setMotor (motor1 🗸 , 50);
		setMotor (motor6 🗸 , 50);
	}	else {
		stopAllMotors ();
		wait(1, seconds -);
		backward (1 , rotations 🗸 , 50);
		turnLeft (1.50 , rotations 🗸 , 50);
	}	
}		

Code that is used to avoid a wall.....

